Определение поля внутри световода

Геометрия диэлектрического световода показана на рис. 9. Он предоставляет собой плоскую диэлектрическую пластину толщиной 2а с диэлектрической проницаемостью e1 (показатель преломления n1) и окружен диэлектрическими полупространствами с проницаемостью e1 (показатель преломления n2). Предположим. что e1 >e2 (n1 > n2). Такой выбор значений диэлектрических проницаемостей обусловлен тем, что только в этом случае существует полное внутренне отражение о границ раздела сред, подобно тому, что имеет место в металлическом световоде и, кроме того, большая часть энергии (или вся) распространяется вдоль продольной оси z.

Применим такой же метод анализа, что и для металлического световода. Несмотря на схожесть геометрии, результаты анализа должны быть другими, поскольку в случае диэлектрического световода граничные условия отличаются от граничных условий на стенках металлического световода (у последнего они однородные, т.е. на границах раздела).

Рис. 9. − Планарный диэлектрический световод

Введем в световод плоскую однородную волну. Её волновой вектор имеет две компоненты: вдоль оси z, - вдоль оси x. Во второй среде волновой вектор с компонентами и . Очевидно (ранее это было показано), что должно выполняться равенство .

Сразу ограничимся случаем когда , поскольку именно он представляет наибольший практический интерес, и рассмотри м опять только Н поляризованную волну. (Изучение случая Е поляризованной волны рекомендуется провести самостоятельно).

Напряженности электрического поля падающей и отраженной волн в первой среде по-прежнему описываются выражениями (16) и (17), а напряженность полного поля (18)

. (30)

В среде 2 для преломленного поля соответственно имеем

. (31)

В выражениях (30) и (31) - R и T коэффициенты отражения и прохождения соответственно,

,

в показателе экспоненты знак “-” - для , знак “+” - для .

Полное поле (30) должно удовлетворять граничным условиям (условиям непрерывности при переходе через границу раздела) при . Учтем вначале ГУ при . Поскольку ГУ в данном случае отличаются от ГУ для металлического световода мы не можем воспользоваться результатами из раздела 2. Однако, рассматриваемая ситуация в точности совпадает с той, которая имела место при изучении явления полного внутреннего отражения. Поэтому мы можем использовать все результаты этого раздела. При этом нужно учесть только некоторые отличия чисто геометрического характера: ось x направлена в противоположную; граница раздела смещена из начала координат на величину +a ; угол q отчитывается не от нормали к границе раздела, а от самой границы. Учитывая эти отличия, из (12, 30) получим

, (32)

, (33)

где . (34)

Удовлетворяя теперь ГУ на нижней границе , приходим к соотношению

. (35)

Равенство (35) будет иметь место при

. (36)

Соотношение (36) является по сути дисперсионным уравнением.

Из (32) с учетом (36) можно записать окончательное выражение для полного поля внутри диэлектрического световода

Перейти на страницу: 1 2

Другое по теме:

Сквозное проектирование усилителя звуковой частоты
Интегральная микросхема - микроэлектронное изделие, выполняющее определенную функцию преобразования, обработки сигнала и (или) накапливания информации и имеющее высокую плотность упаковки электрически соединенных элементов и ...

Разработка лабораторного макета для исследования RS-триггеров
Устройство, имеющее два устойчивых состояния, называют триггером. В одном из них на выходе триггера присутствует высокий потенциал, в другом - низкий. Аналогично мультивибратору, переход триггера из одного состояние в др ...

©  www.techvarious.ru - 2020