Обзор различных видов и форматов модуляции

Модуляция это процесс, в котором задействованы одна или несколько характеристик несущего сигнала: амплитуда, частота или фаза. Запишем модулированный сигнал:

(t)=Accos[wct + y(t)] (1.1.1)

где y(t) - мгновенная фаза, Ac - амплитуда сигнала,wc -частота.

Соответственно, существуют три основные технологии кодирования или модуляции, выполняющие преобразование цифровых данных в аналоговый сигнал (см. рисунок 1.1): амплитудная манипуляция (amplitude-shift keying - ASK), частотная манипуляция (frequency-shift keying - FSK) и фазовая манипуляция (phase-shift keying - PSK). Отметим, что во всех перечисленных случаях результирующий сигнал центрирован на несущей частоте.

Рисунок 1.1 - Модуляция цифровых данных аналоговыми сигналами

Амплитудная манипуляция

При амплитудной манипуляции два двоичных значения представляются сигналами несущей частоты с двумя различными амплитудами. Одна из амплитуд, как правило, выбирается равной нулю т.е. одно двоичное число представляется наличием несущей частоты при постоянной амплитуде, а другое - ее отсутствием (рисунок 1.1.а). Результирующий сигнал равен

(1.1.2)

Здесь A×cos(2pfct) - несущий сигнал. Метод амплитудной манипуляции чувствителен к внезапным скачкам напряжения и неэффективен. В телефонных линиях он обычно используется только при скоростях до 1200 бит/с. Метод амплитудной манипуляции используется для передачи цифровых данных по оптоволокну. Иными словами, одна сигнальная посылка представляется световым импульсом, тогда как другая - отсутствием света. В лазерных передатчиках имеется, как правило, фиксированный ток смещения, вызывающий излучение света с более низким уровнем. В результате одна из сигнальных посылок представляется этим уровнем, тогда как световая волна большей амплитуды представляет другую сигнальную посылку.

Частотная манипуляция

Наиболее распространенной формой частотной манипуляции является бинарная, в которой два двоичных числа представляются сигналами двух различных частот, расположенных около несущей. Результирующий сигнал равен

(1.1.3)

где f1 и f2 - частоты, смещенные от несущей частоты на величины, равные по модулю, но противоположные по знаку.

На рисунке 1.2 приведен пример использования частотной манипуляции для дуплексной работы в телефонной линии. Данный рисунок представляет собой спецификацию модемов серии Bell System 108. Напомним что, по телефонным линиям передаются частоты приблизительно от 300 до 3400 Гц и что дуплексная передача означает одновременную передачу сигналов в обоих направлениях. Для организации дуплексной передачи полоса разделяется на две части. В одном направлении (передача или прием) числа 0 и 1 представляются частотами, центрированными на частоте 1170 Гц, но смещенными на 100 Гц в обе стороны. Чередование этих частот должно дать сигнал, спектр которого лежит в левой затененной части рисунка 1.2. Подобным образом при приеме или передаче в противоположном направлении модем использует частоты, смещенные на 100 Гц от частоты 2125 Гц. Диапазон полученного в результате сигнала обозначен правой затененной областью рисунка 1.2. Отметим, что сигналы несколько перекрываются, поэтому между ними существует незначительная интерференция.

Рисунок 1.2 - Дуплексная передача по телефонной линии с использованием частотной манипуляции

Бинарная частотная манипуляция менее восприимчива к ошибкам, чем амплитудная манипуляция. В телефонных линиях она также используется при скоростях до 1200 бит/с. Схема амплитудной манипуляции применяется в высокочастотных (от 3 до 30 МГц) радиопередачах и в локальных сетях, использующих коаксиальный кабель, она может применяться даже на более высоких частотах.

Более эффективной, но и более подверженной ошибкам, является схема многочастотной манипуляции, в которой используются более двух частот. В этом случае каждая сигнальная посылка представляет более одного бита. Переданный сигнал многочастотной манипуляции (для одного периода передачи сигнальной посылки) можно определить следующим образом:

(1.1.4)

где fi = fc+(2i-1-M)×fd; fc - несущая частота; fd - разностная частота; М - число различных сигнальных посылок = 2L; L - число битов на одну сигнальную посылку.

Перейти на страницу: 1 2 3 4 5

Другое по теме:

Разработка функциональных узлов цифровой системы передачи
Постоянно растущие объёмы передаваемой информации, расширение номенклатуры услуг и ряд других факторов ставят задачи непрерывного увеличения пропускной способности и скорости передачи данных в цифровых системах передачи. Одна ...

Синтез системы автоматического управления приготовления шоколадной глазури
Системы автоматического управления создаются для того, чтобы автоматически, без непосредственного участия человека поддерживать необходимый режим работы различных обслуживаемых этими автоматами объектов. Системы автоматическо ...

©  www.techvarious.ru - 2021