Сильфоны, мембраны и тонкие пластины

Чувствительные элементы, входящие в состав датчиков давления, являются механическими устройствами, деформирующимися под действием внешнего напряжения. Такими устройствами могут быть трубки Бурдона (С-образные, спиральные и закрученные), гофрированные и подвесные диафрагмы, мембраны, сильфоны и другие элементы, форма которых меняется под действием на них давления.

Рис.2.1 А - стальной сильфон, используемый в датчиках давления (Servometer Corp., Cedar Grove, NJ), Б - металлическая гофрированная диафрагма, применяемая для преобразования давления в линейное перемещение

На рис.2.1А показан сильфон, преобразующий давление в линейное перемещение, которое может быть измерено при помощи соответствующего датчика. Таким образом, сильфон выполняет первый этап преобразований давления в электрический сигнал. Он обладает относительно большой площадью поверхности, что дает возможность получать довольно существенные перемещения даже при небольших давлениях. Жесткость цельного металлического сильфона пропорциональна модулю Юнга материала и обратно пропорциональна внешнему диаметру и количеству изгибов на нем. Жесткость сильфона также связана кубической зависимостью с толщиной его стенок.

На рис.2.1Б показана диафрагма, применяемая в анероидных барометрах для преобразования давления в линейное отклонение. Диафрагма, формирующая одну из стенок камеры давления, механически связана с тензодатчиком, который преобразует ее отклонения в электрический сигнал. В настоящее время большинство датчиков давления такого типа изготавливаются с кремниевыми мембранами, методами микро-технологий.

Рис.2.2 Деформация тонкой пластины (А) и мембраны (Б) под действием давления р

Мембрана - это тонкая диафрагма, радиальное растяжение которой S измеряется в Ньютонах на метр (рис.2.2Б). Коэффициентом жесткости при изгибе здесь можно пренебречь, поскольку толщина мембраны гораздо меньше ее радиуса (по крайней мере в 200 раз). Приложенное давление к одной из сторон мембраны сферически выгибает ее. При низких значениях давления р отклонение центра мембраны zm и ее механическое напряжение уm являются квазилинейными функциями давления (напряжение измеряется в Н/м2):

, (2.1)

, (2.2)

где r - радиус мембраны, a g - ее толщина. Механическое напряжение мембраны считается постоянным по всей ее поверхности.

Для нахождения наименьшей собственной частоты мембраны можно воспользоваться следующим соотношением:

, (2.3)

где р - плотность материала мембраны. При значительной толщине мембраны, когда ее отношение r/g ≤100, речь уже идет о тонкой пластине (рис.2.2А). Если такую пластину закрепить между двумя зажимными кольцами, в системе появится значительный гистерезис, вызванный силами трения между кольцами и пластиной. Поэтому пластину и поддерживающие компоненты лучше изготавливать в виде монолитной конструкции.

Для пластины, также как и для мембраны, максимальное отклонение линейно связано с давлением:

, (2.4)

где Е - модуль Юнга (Н/м2), a v - коэффициент Пуассона. Максимальное механическое напряжение в пластине тоже является линейной функцией давления:

Перейти на страницу: 1 2

Другое по теме:

Моделирование работы узла коммутации
Для выполнения курсовой работы требуется создать модель, используя знания в области имитационного моделирования, а также практические навыки, полученные на лабораторных работах. Необходимо выполнить всех этапы создания мо ...

Разработка единого системного подхода к решению задачи оптимального оценивания
При разработке перспективных и оптимизации существующих информационно-измерительных систем (ИИС) различного назначения, широко используемых в гражданских и военных сферах, особое внимание уделяется вопросам оптимизации обрабо ...

©  www.techvarious.ru - 2019