Общие положения синтеза системы методом АКР

В основе АКР лежат интегральные квадратичные критерии качества. Задача АКОР состоит в том, что для объекта, движение которого описывается системой линейных дифференциальных уравнений

, , (3.1)

где все координаты Xi и управление U заданы в относительных единицах, необходимо синтезировать алгоритм управления, доставляющий минимум функционалу качества

, (3.2)

где , - заданная траектория невозмущенного движения (или уровень стабилизации).

В векторной форме:

;

. (3.3)

Преобразуем исходную систему дифференциальных уравнений, перейдя к уравнениям возмущенного движения:

, ; (3.4)

.

Задача решается методом динамического программирования. Запишем уравнение Беллмана:

. (3.5)

Поскольку не все оптимальные управления могут оказаться устойчивыми, использование функции Ляпунова V в качестве функции Беллмана f одновременно обеспечит устойчивость системы.

Функция Ляпунова для любых линейных систем

, в векторной форме .

Тогда управление ищется в виде

. (3.6)

Для синтеза алгоритма управления достаточно найти требующиеся коэффициенты функции Ляпунова Aij (Aij = Aji). Определить Aij можно, решив матричное уравнение Барбашина

,

(3.7)

где С - матрица Барбашина, элементы которой рассчитываются по следующим правилам:

(3.8)

- вектор коэффициентов функции Ляпунова;- вектор коэффициентов критерия качества.

Другое по теме:

Разработка и исследование характеристик платформенной инерциальной навигационной системы полуаналитического типа
Цель настоящей работы разработать алгоритм платформенной инерциальной навигационной системы, работающей в геоцентрической системе координат, и определяющей в этой системе следующие параметры: Координаты Скорости Углы ...

Параметры и характеристики емкостных охранных устройств
сентября 2001 года перевернуло мышление людей: они стали больше задумываться о защите аэропортов, полетов и о безопасности в целом. Угроза подобных акций заставила разрабатывать более совершенные охранные системы для надежной ...

©  www.techvarious.ru - 2021