Излучения и поля

К числу вредных факторов, с которыми сталкивается человек, работающий за монитором, относятся рентгеновское и электромагнитное излучения, а также электростатическое поле. (Допустимые нормы для этих параметров представлены в таблице 4.3.1)

Таблица (4.3.1) - Допустимые значения параметров излучений, генерируемых видеомониторами

Параметры

Допустиме значения

Мощность экспозиционной дозы рентгеновского излучения на расстоянии 0,05 м вокруг видеомонитора

100 мкР/час

Электромагнитное излучение на расстоянии 0,5 м вокруг видеомонитора по электрической составляющей: в диапазоне 5 Гц-2 кГц

25 В/м

в диапазоне 2-400 кГц

2,5 В/м

по магнитной составляющей: в диапазоне 5 Гц-2 кГц

250 нТл

в диапазоне 2-400 кГц

25нТл

Поверхностный электростатический потенциал

не более 500 В

С целью снижения риска для здоровья различными организациями были разработаны рекомендации по параметрам мониторов, следуя которым производители мониторов борются за наше здоровье. Все стандарты безопасности для мониторов регламентируют максимально допустимые значения электрических и магнитных полей, создаваемых монитором при работе. Практически в каждой развитой стране есть собственные стандарты, но особую популярность во всем мире (так сложилось исторически) завоевали стандарты, разработанные в Швеции и известные под именами TCO и MPRII.

Стандарты TCO разработаны с целью гарантировать пользователям компьютеров безопасную работу. Рекомендации TCO используются производителями мониторов для создания более качественных продуктов, которые менее опасны для здоровья пользователей. Суть рекомендаций TCO состоит не только в определении допустимых значений различного типа излучений, но и в определении минимально приемлемых параметров мониторов, например, поддерживаемых разрешений, интенсивности свечения люминофора, запас яркости, энергопотребление, шумность и т.д.

Большинство измерений во время тестирований на соответствие стандартам TCO проводятся на расстоянии 30 см спереди от экрана и на расстоянии 50 см вокруг монитора. Для сравнения: во время тестирования мониторов на соответствие другому стандарту MPRII все измерения производятся на расстоянии 50 см спереди экрана и вокруг монитора. Это объясняет то, что стандарты TCO более жесткие, чем MPRII.был разработан SWEDAC (The Swedish Board for Technical Accreditation) и определяет максимально допустимые величины излучения магнитного и электрического полей, а также методы их измерения. MPRII базируется на концепции о том, что люди живут и работают в местах, где уже есть магнитные и электрические поля, поэтому устройства, которые мы используем, такие, как монитор для компьютера, не должны создавать электрические и магнитные поля, большие чем те, которые уже существуют. Заметим, что стандарты TCO требуют снижения излучений электрических и магнитных полей от устройств настолько, насколько это технически возможно, вне зависимости от электрических и магнитных полей, уже существующих вокруг нас. Впрочем, как уже было отмечено, стандарты TCO жестче, чем MPRII.

Компьютерные технологии, являясь великим достижением человечества, могут иметь отрицательные последствия для здоровья людей. Для снижения ущерба здоровью необходимо соблюдение установленных гигиенических требований к режимам труда и организации рабочих мест. Гигиенистами и физиологами проведено множество экспериментов по изучению работоспособности, выявлению причин утомления и возникновения патологических отклонений у работающих за ПЭВМ. Результаты этих экспериментов используются при разработке оптимальных режимов работы. Выбор режима зависит от таких факторов, как длительность смены, время суток, вид деятельности, тяжесть и напряженность труда, санитарно-гигиенические условия на рабочем месте.

Заключение

В данной дипломной работе был разработан динамический алгоритм, позволяющий определять с большой точностью угловую ориентацию объекта - потребителя. Вычисления проводились в математической среде MathCad14, входными данными являлось созвездие из 10 навигационных космических аппаратов (НКА), спутниковых радионавигационных систем (CРНС: 2 ГОНАСС, 6 GPS), данный динамический алгоритм определения угловой ориентации вращающегося объекта - потребителя может производить расчет при при минимальном созвездии из 3 НКА. В результате расчетов были получены графики траектории вектора базы объекта - потребителя в топоцентрической системе координат (ТЦСК).

Перейти на страницу: 1 2

Другое по теме:

Расчет преобразователя микроконтроллера с CAN-шиной
Быстрое развитие микроэлектроники и широкое применение ее изделий в различных сферах человеческой деятельности, в том числе и промышленности, а так же высочайшая степень сложности выполняемых ими функций являются одними из ос ...

Конструкция и характеристика оптических кабелей связи
Сегодня, как никогда ранее, регионы России нуждаются в связи, как в количественном, так и в качественном плане. Руководители регионов в первую очередь озабочены социальным аспектом этой проблемы, ведь телефон-это предмет перв ...

©  www.techvarious.ru - 2018