Расширение области за счет объединения пикселей

Расширение области сводится к процедуре группирования пикселов или подобластей в большие объединения. Простейшей из них является агрегирование пикселов. Процесс начинается с выбора множества узловых точек, с которых происходит расширение области в результате присоединения к узловым точкам соседних пикселов с похожими характеристиками (интенсивность, текстура или цвет). Двумя очевидными проблемами являются: выбор начальных узлов для правильного представления областей, представляющих интерес, и определение подходящих свойств для включения точек в различные области в процессе расширения. Выбор множества, состоящего из одной или нескольких начальных точек, следует из постановки задачи. Например, в военных приложениях объекты, представляющие интерес, имеют более высокую температуру, чем фон, и поэтому проявляются более ярко. Выбор наиболее ярких пикселов является естественным начальным шагом в алгоритме процесса расширения области. При отсутствии априорной информации можно начать с вычисления для каждого пикселя набора свойств, который наверняка будет использован при установлении соответствия пикселя той или иной области в процессе расширения. Если результатом вычислений являются группы точек (кластеры), тогда в качестве узловых берутся те пиксели, свойства которых близки к свойствам центроидов этих групп. Так, в примере, приведенном выше, гистограмма интенсивностей показала бы, что точки с интенсивностью от одного до семи являются доминирующими. Выбор критерия подобия зависит не только от задачи, но также от вида имеющихся данных об образе. Например, анализ информации, полученной со спутников, существенно зависит от использования цвета. Задача анализа значительно усложнится при использовании только монохроматических образов. К сожалению, в промышленном техническом зрении возможность получения мультиспектральных и других дополнительных данных об образе является скорее исключением, чем правилом [5]. Обычно анализ области должен осуществляться с помощью набора дескрипторов, включающих интенсивность и пространственные характеристики (моменты, текстуру) одного источника изображения. Отметим, что применение только одних дескрипторов может приводить к неправильным результатам, если не используется информация об условиях связи в процессе расширения области. Это легко продемонстрировать при рассмотрении случайного расположения пикселов с тремя различными значениями интенсивности. Объединение пикселов в «область» на основе признака одинаковой интенсивности без учета условий связи приведет к бессмысленному результату при сегментации.

Другой важной проблемой при расширении области является формулировка условия окончания процесса. Обычно процесс расширения области заканчивается, если больше не существует пикселов, удовлетворяющих критерию принадлежности к той или иной области. Выше упоминались такие критерии, как интенсивность, текстура и цвет, которые являются локальными по своей природе и не учитывают «историю» процесса расширения области. Дополнительный критерий, повышающий мощность алгоритма расширения области, включает понятие размера, схожести между пикселем-кандидатом и только что созданными пикселями (сравнение интенсивности кандидата и средней интенсивности области), а также формы области, подлежащей расширению. Использование этих типов дескрипторов основано на предположении, что имеется неполная информация об ожидаемых результатах.

Другое по теме:

Регистратор колебаний поверхности земли
Тема курсового проекта «Регистратор колебаний поверхности земли ». Одним из важнейших факторов, определяющим темпы научно-технического прогресса в современном обществе, являются СВТ (средства вычислительной техники). Ускор ...

Двухзеркальная антенна по схеме Кассегрена
Зеркальные антенны применяют в различных диапазонах волн: от оптического до коротковолнового, особенно широко в сантиметровом и дециметровом диапазонах. Эти антенны отличаются конструктивной простотой, возможностью получения ...

©  www.techvarious.ru - 2019