Метод оценивания числовых характеристик полезных сигналов на фоне сингулярных помех в классе функций с финитным спектром

В настоящем разделе в классе функций с финитным спектром разработан метод оптимального вычисления операторов - кратного дифференцирования, позволяющий формировать несмещенные значения соответствующих производных, инвариантные к сингулярным погрешностям входных данных. Получены оценки сверху на методическую и флуктуационную погрешности вычислений. Дан иллюстративный пример.

При решении широкого круга математических и прикладных задач зачастую возникает необходимость - кратного дифференцирования функций, заданных на некоторой системе точек [4, 5, 12].

В работе [4], с использованием интерполяционной формулы Котельникова развит математический аппарат - кратного дифференцирования в классе функций с финитным спектром, получены оценки сверху на соответствующие погрешности вычислений. Однако в [4] отсчеты значений дифференцируемых функций полагались известными точно. Вместе с тем, на практике вычислительный процесс всегда сопровождается ошибками, при этом результирующая погрешность входных данных в общем случае содержит как случайную, так и сингулярную составляющие. Известно, что оптимальное решение данной задачи можно получить в рамках метода наименьших квадратов (МНК). Однако непосредственное применение последнего зачастую приводит к решению задач высокой размерности либо к получению смещенных оценок из-за наличия сингулярных погрешностей.

С учетом вышесказанного вполне правомерно поставить вопрос о развитии полученных ранее результатов и разработке универсального метода оптимального оценивания значений операторов - кратного дифференцирования, позволяющего формировать несмещенные оценки соответствующих производных, устойчивые к сингулярным погрешностям входных данных. Требование устойчивости вычислительных алгоритмов к сингулярным погрешностям является принципиально важным, поскольку нескомпенсированность последних практически полностью обесценивает получаемые результаты и приводит к невозможности достоверной интерпретации вычислительного эксперимента [2, 3, 23, 24, 27]. Решению вышеперечисленного круга проблем посвящена настоящая работа.

Другое по теме:

Сквозное проектирование усилителя звуковой частоты
Интегральная микросхема - микроэлектронное изделие, выполняющее определенную функцию преобразования, обработки сигнала и (или) накапливания информации и имеющее высокую плотность упаковки электрически соединенных элементов и ...

Распространение волн в световодах
Падение плоской волны на границу раздела двух сред Рассмотрим плоскую границу раздела двух сред с различными диэлектрическими проницаемостями и . Индексы i, r, t - относятся к падающей, отраженной и прошедшей волн ...

©  www.techvarious.ru - 2019