Влияние погрешностей задания отсчетов функций на точность дифференцирования

При практической реализации численных алгоритмов дифференцирования на ЭВМ принципиальным является вопрос, связанный с устойчивостью разрабатываемых алгоритмов по отношению к методическим погрешностям и погрешностям задания отсчетов дифференцируемых функций. Последний вид погрешностей связан, например, с ошибками округления или измерения, которые необходимо учитывать при решении задачи оценивания.

Покажем, что математический аппарат N-кратного дифференцирования на основе ряда Котельникова в большинстве практически важных случаев является более устойчивым по отношению к случайным ошибкам задания отсчетов дифференцируемых функций по сравнению с традиционными методами, предполагающими использование конечно-разностных схем.

Пусть φ(t) - произвольная функция, методическая погрешность N-кратного дифференцирования которой не превышает величины . Считаем также заданным вектор отсчетов где - вектор-столбец отсчетов дифференцируемой функции φ(t); - вектор-столбец ошибок задания отсчетов исходной функции φ(t) на отрезке [-Т, Т]. Принимаем, что ошибка является векторной случайной величиной, имеющей нулевое математическое ожидание и соответствующую корреляционную матрицу где - дисперсия.

Учитывая, что модель отсчетов предполагает наличие гауссовских ошибок, а формулы N-кратного дифференцирования на основе ряда Котельникова соответствуют линейным преобразованиям над отсчетами исходной функции, корреляционную матрицу ошибок вычисления значений компонент вектора производных можно представить в следующем виде [2]:

(2.50)

где - матрица дифференцирования.

Если матрица является диагональной, причем

то элементы матрицы можно определить следующим образом:

(2.51)

для четных ;

(2.52)

для нечетных .

Анализ выражений (2.51) и (2.52) показывает, что степень устойчивости результатов дифференцирования к случайным ошибкам задания отсчетов функции φ(t) в основном определяется величиной Поскольку метод N-кратного дифференцирования на основе ряда Котельникова работоспособен при достаточно больших значениях Δt (для функций с «хорошими» спектральными свойствами), а традиционные (конечно-разностные) методы - лишь при малых значениях , то можно утверждать, что в большинстве практически важных случаев, встречающихся при решении задач оценивания, может быть достигнута более высокая устойчивость к указанным ошибкам. Очевидно, что чем «лучше» спектральные свойства функции φ(t) (уже ее спектр), тем больше Δt, и, следовательно, меньшие значения дисперсии

Перейти на страницу: 1 2 3

Другое по теме:

Двухзеркальная антенна по схеме Кассегрена
Зеркальные антенны применяют в различных диапазонах волн: от оптического до коротковолнового, особенно широко в сантиметровом и дециметровом диапазонах. Эти антенны отличаются конструктивной простотой, возможностью получения ...

Синтез системы автоматического управления приготовления шоколадной глазури
Системы автоматического управления создаются для того, чтобы автоматически, без непосредственного участия человека поддерживать необходимый режим работы различных обслуживаемых этими автоматами объектов. Системы автоматическо ...

©  www.techvarious.ru - 2019