Выбор оптического волокна для проектируемой ВОЛС

Волокно SF. В начале 80-х годов передатчики на длину волны 1550 нм имели очень высокую цену и низкую надежность и не могли конкурировать на рынке с передатчиками на длину волны 1300 нм. Поэтому стандартное ступенчатое волокно SF (рис. 2.13 а) стало первым коммерческим волокном и сейчас наиболее широко распространено в телекоммуникационных сетях. Оно оптимизировано по дисперсии для работы в окне 1310 нм, хотя и дает меньшее затухание в окне 1550 нм.

Волокно DSF. По мере совершенствования систем передачи на длине волны 1550 нм встает задача разработки волокна с длиной волны нулевой дисперсии, попадающей внутрь этого окна. В итоге в середине 80-х годов создается волокно со смещенной дисперсией DSF, полностью оптимизированное для работы в окне 1550 нм как по затуханию, так и по дисперсии. На протяжении многих лет волокно DSF считается самым перспективным волокном. С приходом более новых технологий передачи мультиплексного оптического сигнала большую роль начинают играть эрбиевые оптические усилители типа EFDA, способные усиливать многоканальный сигнал. К сожалению, более поздние исследования (в начале 90-х годов) показывают, что именно длина волны нулевой дисперсии (1550 нм), попадающая внутрь рабочего диапазона эрбиевого усилителя, является главным потенциальным источником нелинейных эффектов (прежде всего, четырехволнового смешивания), которые проявляются в резком возрастании шума при распространении многоканального сигнала.

Дальнейшие исследования подтверждают ограниченные возможности DSF при использовании в системах WDM. Чтобы избежать нелинейных эффектов при использовании DSF в WDM системах, следует вводить сигнал меньшей мощности в волокно, увеличивать расстояние между каналами и избегать передачи парных каналов (симметричных относительно l0).

Четырехволновое смешивание - это эффект, приводящий к рассеянию двух волн с образованием новых нежелательных длин волн. Новые волны могут приводить к деградации распространяемого оптического сигнала, интерферируя с ним, или перекачивать мощность из полезного волнового канала. Именно из-за эффекта четырехволнового смешивания стало ясно, что необходимо разработать новый тип волокна, в котором l0 располагалось бы вдали, то есть, по одну сторону (левее или правее) от всех возможных каналов.

Волокно NZDSF создается в начале 90-х годов с целью преодолеть недостатки волокна DSF, проявляющиеся при работе с мультиплексным оптическим сигналом. Известное также как λ-смещенное волокно, оно имеет особенность в том, что длина волны нулевой дисперсии вынесена за пределы полосы пропускания эрбия. Это уменьшает нелинейные эффекты и увеличивает характеристики волокна при передаче DWDM сигнала.

Рисунок 2.14 Хроматическая дисперсия волокон в окне 1550 нм

Две марки λ- смещенного волокна, появившиеся несколько лет назад, широко используются сегодня:

волокно True Wave фирмы Lucent Tec., и волокно SMF-LS фирмы Corning. Оба имеют ненулевую дисперсию во всем диапазоне полосы пропускания эрбия. Волокно True Wave обеспечивает положительную дисперсию при точке нулевой дисперсии в районе 1523 нм, в то время как SMF-LS обеспечивает отрицательную дисперсию с точкой нулевой дисперсией чуть выше 1560 нм. В начале 1998 года фирма Corning выпустила еще одну марку λ- смещенного волокна - LEAFтм.

Сравнительный анализ основных характеристик волокон True Wave, SMF-LS и LEAFтм приведен в таблице 2.2.

Таблица 2.2 Основные характеристики одномодовых волокон

Характеристики

SMF-28

True -Wave

SMF-LS

LEAFтм

Max.затухание на длине волны 1550нм(дБ/км)

≤ 0.20

≤ 0,20

≤ 0.25

≤ 0.20

Затухание на сухом стыке (дБ) при1550 нм

≤ 0.1

≤ 0.1

≤ 0.1

н/д

Хроматическая дисперсия в зоне ненулевой дисперсии

Min (пс/нм*км)

н/д

0.8

н/д

1

Max(пс/нм*км)

20

4.6

-3.5

6

Наклон ненулевой дис-персии S0 (пс/(нм 2*нм)

н/д

≤ 0.095

≤ 0.092

н/д

Длина волны ненулевой дисперсии λ0 (нм)

н/д

≤ 1540

≥ 1560

н/д

Диаметр поля моды (нм) при 1500нм

10.5 ± 1.06

8.4 ± 0.6

8.4 ± 0.5

9.5 ± 0.5

Кабельная длина волны отсечки λccf (нм)

н/д

≤ 1260

≤ 1260

н/д

Поляризационая модовая дисперсия (пс/√км)

≤ 0.5 при 1550 нм

≤ 0.5 при 1550 нм

≤ 0.5 при 1550 нм

≤ 0.08

Перейти на страницу: 1 2 3 4

Другое по теме:

Устройства приема и обработки сигналов
В качестве возможного прототипа рассмотрим схемы, выполненные на микросхеме К174ХА2, предназначенной для использования в радиоприемниках с АМ [4], в частности, схема приемника, обеспечивающая чувствительность 3-5 мкВ (выше за ...

Разработка и изготовление микропроцессорного блока управления устройствами аквариума
В настоящее время автоматизированы все основные процессы или операции управления и роль человека сводится лишь к наблюдению за работой автоматических устройств. Целью дипломной работы являлось разработка и изготовление ми ...

©  www.techvarious.ru - 2018